Velocity Dependence of Joint Friction in Robotic Manipulators with Gear Transmissions
نویسندگان
چکیده
This paper analyses the problem of modelling joint friction in robotic manipulators with gear transmissions at joint velocities varying from close to zero until their maximum appearing values. It is shown that commonly used friction models that incorporate Coulomb, (linear) viscous and Stribeck components are inadequate to describe the friction behaviour for the full velocity range. A new friction model is proposed that relies on insights from tribological models. The basic friction model of two lubricated discs in rolling-sliding contact is used to analyse viscous friction and friction caused by asperity contacts inside gears and roller bearings of robot joint transmissions. The analysis shows different viscous friction behaviour for gears and pre-stressed bearings. The sub-models describing the viscous friction and the friction due to the asperity contacts are combined into two friction models; one for gears and one for the pre-stressed roller bearings. In this way, a new friction model [1] is developed that accurately describes the friction behaviour in the sliding regime with a minimal and physically sound parametrisation. The model is linear in the parameters that are temperature dependent, which allows to estimate these parameters during the inertia parameter identification experiments. The model, in which the Coulomb friction effect has disappeared, has the same number of parameters as the commonly used Stribeck model [2]. The model parameters are identified experimentally on a Stäubli RX90 industrial robot.
منابع مشابه
A nonlinear disturbance observer for robotic manipulators
A new nonlinear disturbance observer (NDO) for robotic manipulators is derived in this paper. The global exponential stability of the proposed disturbance observer (DO) is guaranteed by selecting design parameters, which depend on the maximum velocity and physical parameters of robotic manipulators. This new observer overcomes the disadvantages of existing DO’s, which are designed or analyzed b...
متن کاملDiscrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کاملImproving the Positioning Accuracy of Robotic Manipulators Subject to Base Oscillations
Abstract. Several robotic system applications require manipulators to carry heavy payloads while operating from moving vehicles. These manipulators are mounted on moving/compliant bases, introducing additional degrees of freedom that are not actuated, increasing the complexity of the dynamic modeling and control. In this paper, a control strategy to improve the performance of mobile robotic man...
متن کاملCONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...
متن کاملDynamic simulations of an industrial robotic manipulator with joint friction and joint elasticity
Manipulators for laser welding need to be capable of tracking a specified seam with an accuracy in the order of 0.1 mm at speeds exceeding 100 mm/s. A framework for realistic dynamic simulations has been set up to study the applicability of industrial robotic manipulators for such tasks. These simulations describe the closed loop system of the mechanical robot arm and the (digital) controller. ...
متن کامل